GCSE (9-1)

Physics A (Gateway Science)

J249/03: Paper 3 (Higher Tier)

General Certificate of Secondary Education

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2021

1. Annotations available in RM Assessor

Annotation	Meaning
C	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
\boldsymbol{I}	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Answers that can be accepted
ALLOW	Words which are not essential to gain credit
()	Underlined words must be present in answer to score a mark
ECF	Alternative wording
AW	Or reverse argument forward
ORA	

3. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Physics A:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures. AO3.1 Analyse information and ideas to interpret and evaluate.
AO3.1a	Analyse information and ideas to interpret.
AO3.1b	Analyse information and ideas to evaluate.
AO3.2	Analyse information and ideas to make judgements and draw conclusions.
AO3.2a	Analyse information and ideas to make judgements.
AO3.2b	Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3a	Analyse information and ideas to develop experimental procedures.
AO3.3b	Analyse information and ideas to improve experimental procedures.

For answers to Section A if an answer box is blank ALLOW correct indication of answer e.g. circled or underlined.

Question			Answer	Marks	AO element	Guidance
17	(a)		Ammeter B AND Ammeter B does not have a zero error / ammeter A has a zero error \checkmark Ammeter B can read a current of $1 \mathrm{~A} /$ ammeter A cannot read up to a current of $1 \mathrm{~A} /$ only reads to 50 mA	2	3.3b x 2	ALLOW ammeter A does not start at zero ALLOW Ammeter A does not read high enough DO NOT ALLOW higher degree of precision / digital
	(b)	(i)	$\begin{aligned} & \text { (For a fixed resistor) } V \text { is (directly) proportional to I/ } \\ & V=I R \checkmark \end{aligned}$ And gives a straight-line graph through the origin \checkmark	2	$3.2 \mathrm{~b} \times 2$	ALLOW calculation of resistance of 10Ω from the gradient of the graph for two different points for 1 mark ALLOW constant gradient through the origin
		(ii)	Any one from: (Higher current) gives greater heating effect Apparatus was not left to cool between readings \checkmark	1	3.3b	ALLOW the resistor / component had heated up DO NOT ALLOW random error
		(iii)	Ask someone else to repeat your experiment \checkmark Repeat experiment using different equipment \checkmark	2	$3.3 \mathrm{~b} \times 2$	IGNORE just repeat experiment
	(c)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 2.5 (W) award 2 marks $\begin{aligned} & 0.5^{2} \times 10 \\ & 2.5(\mathrm{~W}) \vee \end{aligned}$	2	$\begin{aligned} & 2.1 \\ & 2.1 \end{aligned}$	

Question			Answer	Marks	AO element	Guidance
18	(a)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 67200 (\mathbf{J}) award 2 marks (Energy $=$ mass x shc x temperature change) $0.2 \times 4200 \times 80 \checkmark$ 67200 (J)	2	$\begin{aligned} & 2.1 \\ & 2.1 \end{aligned}$	ALLOW 67000 (J) Note use of 20 or 100 for temperature, scores zero No ECF
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=452000(\mathrm{~J})$ award 2 marks (Energy $=$ mass x specific latent heat) $0.2 \times 2260000 \checkmark$ 452000 (J) \checkmark	2	$\begin{aligned} & 2.1 \\ & 2.1 \end{aligned}$	ALLOW 450000 (J) Note inclusion of a temperature, scores zero No ECF
		(iii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=5.2 \times 10^{5}(\mathrm{~J})$ award 3 marks $\begin{aligned} & 67200+452000=519200 \checkmark \\ & 5.19200 \times 10^{5} \checkmark \\ & 5.2 \times 10^{5}(\mathrm{~J}) \checkmark \end{aligned}$	3	$\begin{aligned} & 2.1 \\ & 2.1 \\ & 1.2 \end{aligned}$	ALLOW ECF from 18(a)(i) and 18(a)(ii) ALLOW ECF for wrong calculation ALLOW 520000 (J) for 2 marks
	(b)	(i)	Any two from: Some of the energy was used to heat the container Heat/energy lost to the environment \checkmark	2	$\begin{aligned} & 3.2 a \\ & 3.3 a \end{aligned}$	ALLOW 1 mark maximum for any general 'energy losses' response
		(ii)	Any one from: Reduces random errors Helps identify anomalies Allows checks for precision \checkmark	1	3.3b	ALLOW improves accuracy

	uestion	Answer	Marks	AO element	Guidance
19*		Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) A detailed description AND explanation of the behaviour of both springs, including correct calculation of spring constant or work done. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) A basic description and explanation of the behaviour of both springs including correct calculation of spring constant or work done OR A detailed description and explanation of the behaviour of both springs. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) A basic description or explanation of both springs OR A detailed description or explanation of one spring. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear.	6	$\begin{gathered} 1.1 \times 1 \\ 2.2 \times 1 \\ 3.1 \mathrm{bx} 2 \\ 3.2 \mathrm{~b} \times 2 \end{gathered}$	AO1.1 Demonstrate knowledge of Hooke's Law to describe the springs For example: - spring A obeys Hooke's law until $5 \mathrm{~N} / 0.20 \mathrm{~m}$ - spring B obeys Hooke's law until $4 \mathrm{~N} / 0.32 \mathrm{~m}$ - up to the elastic limit both springs obey Hooke's law - after the elastic limit both springs are permanently deformed AO3.2b Analyse and draw conclusions from the graphs to describe the behaviour of both springs For example: - spring A has a higher spring constant - spring B has a lower spring constant - both springs have a linear section - both springs have a non-linear section - more work is done stretching spring A up to elastic limit - less work is done stretching spring B up to elastic limit - breaking force comparison AO3.1b Evaluate the graphs using data and calculations For example - spring A has a spring constant of $25 \mathrm{~N} / \mathrm{m}$ - spring B has a spring constant of $12.5 \mathrm{~N} / \mathrm{m}$ - attempt at calculating the work done in stretching the springs, using $\mathrm{E}=1 / 2 \mathrm{kx} \mathrm{x}^{2}$ or $\mathrm{E}=$ $1 / 2 \mathrm{Fx}$ in specific regions

Question	Answer	Marks	AO element	Guidance
	0 marks No response or no response worthy of credit.			AO2.2 Apply understanding of the shape of the graphs to explain the behaviour of the springs For example - up to the elastic limit both springs exhibit elastic behaviour - after the elastic limit Hooke's law is not obeyed - up to the elastic limit the extension is reversible - after the elastic limit the extension is plastic - plastic deformation cannot to reversed - linear section demonstrates Hooke's law being obeyed

Question			Answer	Marks	AO element	Guidance
20	(a)		Any two from: the magnet will exert a force on the wire ORA OR the wire will move (current in the wire) creates a magnetic field the magnetic fields of the magnet and wire interact / AW \checkmark	2	1.2×2	ALLOW attracted / repelled for force
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 0.12 (T) award 3 marks $\begin{aligned} & (F=B I L) \\ & B=F /(I L) \checkmark \\ & =0.15 /(5.0 \times 0.25) \\ & =0.12(\mathrm{~T}) \checkmark \end{aligned}$	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	
	(c)	(i)	Maximum two from: Both rotate (on an axis) Both have a (fixed) magnet surrounding a coil / AW \checkmark Maximum two from: In the motor energy is transferred from the electrical energy store to the kinetic energy store In the generator energy is transferred from the kinetic energy store to the electrical energy store \checkmark In the motor the current (and magnetic field) causes motion \checkmark	3	1.1×3	IGNORE Thermal energy store IGNORE Thermal energy store

Question	Answer	Marks	AO element	Guidance
	In the generator motion (and magnetic field) causes current (in the wire) (the generator) has slip rings and the (motor) a split ring commutator \checkmark			
(ii)	Alternator output is alternating current / a.c. Dynamo output is direct current / d.c. \checkmark	2	1.1×2	

Question			Answer	Marks	AO element	Guidance
21	(a)	(i)	The effort force is further from the pivot \checkmark The effort force has to move further \checkmark	2	1.1×2	
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=650(\mathrm{~N})$ award 4 marks Moment $=$ force $\times($ perpendicular $)$ distance (from pivot) Clockwise moment $=$ anticlockwise moment \checkmark $0.2 F=100 \times 1.3$ or $F=130 / 0.2$ $F=650(N) \checkmark$	4	$\begin{aligned} & 1.2 \\ & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	ALLOW in any form e.g. $100 \times 1.3,130(\mathrm{~N}), \mathrm{F} x$ 0.2
	(b)	(i)	The force of the mug on the table The force of the table on the mug \checkmark	2	1.1×2	ALLOW gravity / force due to gravity / gravitational force ALLOW normal contact force
		(ii)	Upwards force arrow and downwards force arrow Arrows drawn of equal length \checkmark Upwards force arrow labelled normal contact force and downwards force arrow labelled weight Arrows drawn of equal length	3	1.1 2.1 1.1	DO NOT ALLOW more than two arrows ALLOW gravity / force due to gravity / gravitational force

Question		Answer	Marks	AO element	Guidance
24	(a)	A sensible curve drawn from $(0,0) \checkmark$	1	2.2	DO NOT ALLOW a straight line
	(b)	As current increases, power increases \checkmark But As current increases power increases at a faster / increasing rate	2	$2 \times 3.1 \mathrm{a}$	ALLOW As power increases, current increases DO NOT ALLOW Power is (directly) proportional to current squared (since the data does not support this proposal) for the second mark
	(c)	Current read-off to less than half a small square from candidate's graph for a power of $3.0 \mathrm{~W} \checkmark$	1	2.2	
	(d)	Any sensible reference to $P=I^{2} R / P=I V$ and $R=V \div I \checkmark$ One calculation of resistance from graph Second calculation of resistance from the graph and conclusion drawn (showing increase)	3	$\begin{gathered} \hline 1.2 \\ 2.2 \\ 3.2 b \end{gathered}$	ALLOW ECF from candidate's line Numerical examples using plotted data points: 0.9 W and $0.10 \mathrm{~A}: 0.9 \div 0.10^{2}=90 \Omega$ 2.2 W and $0.15 \mathrm{~A}: 2.2 \div 0.15^{2}=98 \Omega$ 4 W and $0.20 \mathrm{~A}: 4 \div 0.20^{2}=100 \Omega$ 7 W and $0.25 \mathrm{~A}: ~ 6 \div 0.25^{2}=112 \Omega$ 11 W and $0.30 \mathrm{~A}: 11 \div 0.30^{2}=122 \Omega$

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

